
TILOS-OPTML++ Seminar: Equilibrium Computation, Deep Multi-Agent Learning, and Multi-Agent Reinforcement Learning
VirtualConstantinos Daskalakis, MIT
Constantinos Daskalakis, MIT
Siddhartha Banerjee, Cornell University Abstract: I will present a class of finite-horizon control problems, where we see a random stream of arrivals, need to select actions in each step, and where the final objective depends only on the aggregate type-action counts; this includes many widely-studied control problems including online resource-allocation, dynamic pricing, generalized assignment, online […]
Alexandros G. Dimakis, Professor, The University of Texas at Austin Abstract: Sparsity has given us MP3, JPEG, MPEG, Faster MRI and many fun mathematical problems. Deep generative models like GANs, VAEs, invertible flows and Score-based models are modern data-driven generalizations of sparse structure. We will start by presenting the CSGM framework by Bora et al. […]
Sicun Gao, Assistant Professor, UC San Diego Abstract: Highly-nonlinear continuous functions have become a pervasive model of computation. Despite newsworthy progress, the practical success of “intelligent” computing is still restricted by our ability to answer questions regarding their quality and dependability: How do we rigorously know that a system will do exactly what we want it […]
Dr. Ismail Bustany, Fellow at AMD Abstract: The FPGA physical design (PD) flow has innate features that differentiate it from its sibling, the ASIC PD flow. FPGA device families service a wide range of applications, have much longer lifespans in production use, and bring templatized logic layout and routing interconnect fabrics whose characteristics are captured by […]
Sherief Reda, Professor, Brown University and Principal Research Scientist at Amazon Abstract: Combinatorial optimization methods are routinely used in many scientific fields to identify optimal solutions among a large but finite set of possible solutions for problems of interests. Given the recent success of machine learning techniques in classification of natural signals (e.g., voice, image, […]
Haoxing Ren, NVIDIA Abstract: In this talk, I will first illustrate how ML helps improve design quality as well as design productivity from design methodology perspective with examples in digital and analog designs. Then I will discuss the potential of applying ML to solve challenging EDA optimization problems, focusing on three promising ML techniques: reinforcement learning […]
Yang Zheng, Assistant Professor, UC San Diego Abstract: Recent studies have started to apply machine learning techniques to the control of unknown dynamical systems. They have achieved impressive empirical results. However, the convergence behavior, statistical properties, and robustness performance of these approaches are often poorly understood due to the non-convex nature of the underlying control problems. […]
Maryam Fazel, Professor, University of Washington Abstract: Policy Optimization methods enjoy wide practical use in reinforcement learning (RL) for applications ranging from robotic manipulation to game-playing, partly because they are easy to implement and allow for richly parameterized policies. Yet their theoretical properties, from optimality to statistical complexity, are still not fully understood. To help […]
Aaron Roth, Professor, University of Pennsylvania Abstract: Machine learning provides us with an amazing set of tools to make predictions, but how much should we trust particular predictions? To answer this, we need a way of estimating the confidence we should have in particular predictions of black-box models. Standard tools for doing this give guarantees […]